Selective Catalytic Oligomerizations and Hydrogenations Using Polymer-anchored Complexes of Nickel and Iridium

By Stephen E. Jacobson and Charles U. Pittman, Jr.*
(Department of Chemistry, The University of Alabama, University, Alabama 35486)

Summary Polystyrene-divinylbenene resin-anchored $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ has been used selectively to oligomerize butadiene to either 4 -vinylcyclohexene or cyclo-octa-1,5-diene, and anchored $\left[\operatorname{Ir}(\mathrm{Cl})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ selectively catalyses the hydrogenation of cyclo-octa-1,5-diene to cyclo-octene; the activity of these catalysts in some cases surpasses that of their homogeneous counterparts under identical conditions.

Anchoring homogeneous catalysts on to resins to give a fixed-bed catalyst which has the selectivity of the original homogeneous species is receiving increased attention. ${ }^{1}$ Cyclo-oligomerization of butadiene by $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ gives 4 -vinylcyclohexene ($4-\mathrm{VCH}$; 30%), cyclo-octa-1,5diene (1,5 -COD; 60%), and cyclododeca-1,5,9-triene ($1,5,9$ CDT; $10 \%)^{2,3}$ The product distribution could be varied by using carbon monoxide or phosphites. ${ }^{2}$

We now report that butadiene was selectively converted into $4-\mathrm{VCH}(\mathbf{9 8 \%})$ using either $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ or its resin-anchored form, (I) (styrene-1 \% divinylbenzene $1 \cdot 33 \%$ $\mathrm{P}, \mathrm{P}: \mathrm{Ni}=2: \mathrm{l}$) in the presence of $\mathrm{CO}\left(10 \mathrm{lb} \mathrm{in}^{2}\right)$ in tetrahydrofuran (THF) or benzene at $115^{\circ} \mathrm{C}$ (Scheme 1). CO slows the oligomerization. The rate using (I) was ca. 30% of the rate using $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ under these con-
ditions in benzene, presumably owing to diffusion limitations. In multiple runs (4 recycles) the molar turnover with (I) was >2000 in benzene and $c a .1000$ in THF, which caused leaching of Ni from (I) which was slowed using a 2% divinylbenzene resin (Ia) ($1 \cdot 75 \% \mathrm{P}, \mathrm{P}: \mathrm{Ni}=2: 1$).

Scheme 1. i, tri-o-tolyl phosphite; $115^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{6} ; \mathrm{ii}, \mathrm{CO}\left(10 \mathrm{lb} \mathrm{in}^{2}\right)$, $115^{\circ} \mathrm{C}, \mathrm{THF}$ or $\mathrm{C}_{6} \mathrm{H}_{6}$.

Commercial styrene-divinylbenzene (Bio Rad Labs, SX-1 or SX-2 resins, 200-400 mesh) was brominated (dark) using $\mathrm{Br}_{2}-\mathrm{FeBr}_{3}$ and then treated with excess of LiPPh_{2} or NaPPh_{2} in THF to provide a series of resins with $0.7-4.0 \%$ P. ${ }^{1,4}$ The metal complexes were anchored by simple phosphine exchange with multiple anchoring to the polymer prevailing. ${ }^{1,5}$

Butadiene was also converted selectively (92%) into $1,5-\mathrm{COD}$ using (Ia) with a 4 mol . excess of tri-o-tolyl phosphite in benzene (Scheme 1). The product distribution was identical using $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in place of (Ia) and
the rate was 3 times that with (Ia). At the maximum molar turnover (>1300) the $\nu(\mathrm{CO})$ i.r. bands had disappeared. The activity was determined in a fixed-bed operation. The catalyst (Ia) was deactivated on recycling.

Scheme 2. i, $\mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}, \mathrm{H}_{2}\left(100 \mathrm{lb} \mathrm{in}^{2}\right), 1.75 \mathrm{~h}$; ii, $\mathrm{H}_{2}(100 \mathrm{lb}$ in 2), $90^{\circ} \mathrm{C}$, DMF, 2 h .

Anchored Vaska's complex (II) selectively catalysed the hydrogenation of $4-\mathrm{VCH}$ to 4 -ethylcyclohexene (92%) and $1,5-\mathrm{COD}$ to cyclo-octene (72%) under the conditions in Scheme 2. Resin (II) (1% divinylbenzene, $1 \cdot 25 \% \mathrm{P}, \mathrm{P}: \mathrm{Ir}$ $=7: 1$) at first catalysed this reaction at a rate of 0.6 that of $\left[\operatorname{Ir}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\right.$ used homogeneously (benzene; $80^{\circ} \mathrm{C}$; $100 \mathrm{lb} \mathrm{in}^{2} \mathrm{H}_{2}$). After one cycle, the hydrogenation rate using (II) increased to 1.5 times the rate using the homogeneous catalyst at $80^{\circ} \mathrm{C}$. On a third recycle at $70^{\circ} \mathrm{C}$, the rate using (II) was 6 times that of the homogeneous reaction at $70^{\circ} \mathrm{C}$. This suggests an $\operatorname{Ir}\left(\mathrm{H}_{2}\right)$ intermediate is formed which is stabilized in the matrix relative to its homogeneous counterpart. Setting aside (II) for 1 week after the third recycle resulted in a rate, on the fourth recycle, only twice
that of the homogeneous rate at $70^{\circ} \mathrm{C}$. Both (II) and Vaska's complex lose their selectivity at higher H_{2} pressures and long reaction times (complete formation of ethylcyclohexane at $100^{\circ} \mathrm{C} ; 300 \mathrm{lb} \mathrm{in}^{2} \mathrm{H}_{2} ; 24 \mathrm{~h}$). Catalyst (II) was repeatedly recycled without loss of activity or selectivity.

Co-ordinating solvents, i.e. dimethylformamide (DMF), are known to enhance catalytic hydrogenation activity with the $\left[\operatorname{Ir}(\mathrm{CO})(\mathrm{X})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and Rh catalysts. ${ }^{6} \quad[\operatorname{Ir}(\mathrm{Cl})(\mathrm{CO})-$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ catalysed the hydrogenation of cyclohexa-1,3and -1,4-diene to cyclohexene in dimethylacetamide. ${ }^{7}$ Thus 1,5-COD was hydrogenated over resin (II) in DMF $\left(90^{\circ} \mathrm{C} ; 100 \mathrm{lb} \mathrm{in}^{2} \mathrm{H}_{2} ; 2 \mathrm{~h}\right)$ to give $70-80 \%$ cyclo-octene. Resin (II) was repeatedly recycled without loss of activity (molar turnover >4000). Cyclo-octa-1,3-diene was isolated as an intermediate in each case (conjugated dienes were previously observed in related reductions ${ }^{8}$). After the first recycle, the rate using (II) was 3 times that using $\left[\operatorname{Ir}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ homogeneously $\left(90^{\circ} \mathrm{C} ; 100 \mathrm{lb} \mathrm{in}^{2}\right)$. The bright yellow (II) becomes a dark green solid upon repeated recycling. An i.r. band at $2060 \mathrm{~cm}^{-1}$ in addition to $v(\mathrm{CO})$ at $1950 \mathrm{~cm}^{-1}$ of (II) indicated the presence of CO trans to Ir-co-ordinated DMF, in accord with the expected trans effect ${ }^{9}$ and the following structure.

(P- $\left.-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPH}_{2}\right) \mathrm{Ir}(\mathrm{CO})(\mathrm{Cl}(\mathrm{DMF})$

The National Science Foundation and the Office of Naval Research are thanked for support.
(Received, 21st October 1974; Com. 1303.)
${ }^{1}$ G. O. Evans, C. U. Pittman, Jr., R. T. Beach, and R. Jones, J. Organometallic Chem., 1974, 67, 295; J. C. Bailar, Catalysis Rev. 1974, $10(1), 17$.
${ }^{2}$ G. Wilke, Angew. Chem. Internat. Edn., 1963, 2, 105.
${ }^{3}$ H. Muller, D. Wittenberg, H. Seibt, and E. Schard, Angew. Chem. Internat. Edn., 1965, 4, 327
${ }^{4}$ C. U. Pittman, Jr. and L. S. Smith, J. Amer. Chem. Soc., 1975, 97, in press; L. S. Smith, MS Thesis, University of Alabama, 1974.
${ }^{5}$ C. U. Pittman, Jr., R. M. Hanes, and L. S. Smith, J. Amer. Chem. Soc., 1975, 97, in press.
${ }^{6}$ B. R. James and N. A. Nemon, Canad. J. Chem., 1967, 46, 217; J. R. Shapley, R. R. Shrock, and D. A. Osborn, J. Amer. Chem. Soc., 1969, 91, 2816.

7 J. E. Lyons, J. Catalysis, 1973, 30, 490.
${ }^{8}$ H. A. Tayim and J. C. Bailar, J. Amer. Chem. Soc., 1967, 89, 4330.
${ }^{9}$ F. Basolo and R. G. Pearson, 'Mechanisms of Inorganic Reactions,' 2nd Edn., Wiley, New York, 1968, p. 361.

